

Kerosene Fire Experiments

Dr. M. Roewekamp, GRS

Prof. Dr.-Ing. D. Hosser and Dr.-Ing. R. Dobbernack, iBMB of TU Braunschweig

5th International Collaborative Project meeting to Evaluate Fire Models for NPP Applications, Gaithersburg, MD, May, 2-3, 2002

Contents

iBMB

- Goals and work program
- Available results from German research
- First results from literature
- First actual experimental results
- Summary and conclusions

Goals and Work Program

iBMB

- Goals
 - Estimation of basic data for simulating kerosene fires under different boundary conditions
 - Exemplary calculation of fire effects for selected kerosene fire scenarios
 - Rough estimate of the risk of explosion in case of sprayed kerosene and the consequences
- Work program
 - ◆ Kerosene pool fire experiments
 - Comparison of the experimental results with data from literature
 - Definition of fire scenarios outside as well as inside of buildings
 - Fire simulations
 - Rough estimate of the consequences of explosions

Results of German Research

- SR 144/1 experiments (1982-1985)
 - Experiments with oil fire loads in pans of 2 m² with and without continuous feeding of oil and different ventilation conditions
 - ◆ Fire compartment temperatures 1080 1370 °C
 - ◆ Burning rate 1,35 3,15 kg / m²-min
 - ◆ Energy release rate up to 2,2 MW / m²
- HDR fire experiments (1986-1992)
 - ◆ Experiments with oil fire loads in pans of 1 3 m² with feeding of oil for different room geometries
 - ◆ Fire compartment temperatures up to 1500 °C
 - Burning rate up to 3,6 kg / m²-min
 - Energy release rate up to 2,6 MW / m²

Results from Literature (1)

iBMB

- Hydrocarbon fires
 - Scaled offshore fire experiments (SINTEF, Norway)
 - ♦ Fast fire spreading on the pool surface
 - ♦ Energy release rate 1,7 4,9 MW / m²
- Fluid fires in general
 - In case of pool fires with sufficient oxygen, medium "burning velocity" of approx. 3 mm/min
 - Energy release rate of kerosene depending on the heat release approx. 11,7 kWh / kg, i.e. 1,4 MW / m²

Results from Literature (2)

IBMB

- Kerosene pool fire experiments
 - ◆ Open kerosene pool fires (SANDIA, USA) 280 m² pan, 15 cm water + 25 cm kerosene
 - ♦ Fire spreading on the pool surface within 20 s
 - ◆ Burning rate 4,1 4,9 kg / m² min (effects of wind)
 - ♦ Maximum temperatures 1300 1500 °C
 - Heat flux density at a wall up to 4,5 m height 100 – 130 kW / m²
- Kerosene explosion experiments
 - ◆ Laboratory scale (Aeronautical Laboratories, USA)
 - Flame point and explosion points uncertain (composition of kerosene not well known)

Recent German Approach

- Kerosene pool fire experiments
 - Kerosene experiments (February 2002) in steel pans of 0,5 m², 1,0 m² und 2,0 m² and kerosene level of 10 cm and 3 cm
 - Measuring burning rate, temperature and radiation heat in the fire compartment
- Definition of relevant fire scenarios
 - ◆ Pool fires outside buildings
 - Fires with combinations of kerosene and other fire loads inside buildings; comparison with former experiments
- Fire simulations
 - Comparison of calculations with different types of codes

Aviation Fuel Fire Experiments Foreseen in Germany for 2002/03

- **iBMB**
- Kerosene pool fire experiments
 - ◆ Inside confinements
 - Outside buildings
- Combustible mixtures from fuel gas and air inside confinements with the potential for deflagration / detonation
- Fuel spray formation and fireball outside buildings

Kerosene Pool Fires -Goals of the Experiments

iBMB

- Basic data for fire simulations
 - Burning rate
 - ◆ Energy release
 - ◆ Flame temperature
 - Heat flux density
- Consideration of dependencies
 - ◆ Pool size
 - ◆ Pool height
 - ◆ Underground material (steel/concrete)

Kerosene Pool Fires Inside Confinements

iBMB

- Room size (L x W x H = 3,6 m x 3,6 m x 5,8 m)
- Pool size: 0,5 m²; 1,0 m²; 2,0 m²; 4,0 m²
- Pool height: 3 cm; 10 cm
- Ventilation
 - ◆ Ventilation controlled
 - Fire load controlled
- Effects of structures and equipment
 - Concrete, steel, etc.
 - ◆ Heat sinks (water tank)
 - · Cable trays in case of low fire loads

Measuring Equipment for Kerosene Pool Fires

- Burning rate by mass loss rate
- Temperatures
 - + Plume
 - 3 levels above the fire
 - Inside and on structures and heat sinks
 - On cable surface (fire inside compartment)
- Velocity
 - Via Plume height and wind velocity
 - In the off-gas line (fire inside compartment)
- Heat flux at different locations
- Gas analysis (O₂, CO₂ and CO)
- Heat camera

Experimental Layout, Measurements

IBMB

- Fire compartment
 - ◆ Length 3,6 m
 - ◆ Width 3,6 m
 - ◆ Height 5,7 m
- Measurements
 - ♦ Plume temperature (6 locations)
 - ◆ Three measurement levels (4 locations)
 - ◆ Surface temperature (3 locations)
 - ◆ Heat flux (4 locations)
 - Mass loss

Fire Compartment Layout (2) iBMB WHY. 2 O MAI.S. 17 WH. 12.18 What I Mai. 14.18 What I

Kerosene Pool Fires Outside Buildings

- Pool size: 0,5 m²; 1,0 m²; 2,0 m²; 4,0 m²; 16 m²
- Filling level: 10 cm
- Ventilation
 - ◆ No wind
 - ◆ Effects of wind
- Reference equipment at a wall
 - ◆ Concrete, steel, etc.
 - ◆ Heat sinks (e.g. water storage tank)

Combustible Gas Air Mixtures Inside Confinements

- **iBMB**
- Formation of combustible mixtures from kerosene and air inside nearly closed confinements
 - Formation of gas clouds
 - Spreading of gas and formation of mixtures
 - Combustion/explosion process (deflagration, detonation, DDT)

Combustible Gas Air Mixtures iBMB Inside Confinements

- Steps of the investigations:
 - ◆ Comparison of data for kerosene and hydrogen
 - Comparison of combustion process of kerosene and hydrogen
 - Specification of additional experiments (PTB)
 - Status of the hydrogen modeling
 - Applicability of available models for fuel gas combustion/explosion (flame acceleration, possibility of DDT)
 - Exemplary analysis for model validation and applicability

Aviation Fuel Spraying And Fireball Outside Buildings

iBMB

Questions:

- How far will the fuel been distributed after the impact?
- What is the droplet size of the fuel droplets?
- Which amount of fuel is directly burnt in the fireball, which amount is available for a pool fire?
- What are the effects and consequences of a fireball?

Fuel Spraying And Fireball Outside Buildings

iBMB

Investigation methods

- Fuel spraying ⇒ impact experiments
 - Depending on velocity, potential targets, amount, etc.
 - Droplet spectra, distribution
- Combustion ⇒ ignition experiments and modeling
 - Amount of directly burnt droplets
 - Fireball characteristics, potential for scale up
- Comparison with literature including reports on aircraft crashes
- \Rightarrow Model for fireball effects and amount of fuel left

Fuel Spraying And Fireball **iBMB Outside Buildings** Impact experiments with fluids (ITA Hannover) Experimental facility Acceleration of pressurized air up to ~ 100 m/s Video observation Variation of velocity, fuel amount, target Droplet diagnosis ◆ Total mass / surface (gravitational/optical) ◆ Size distribution (Impactor) ◆ Velocity (PDA) First experiments foreseen for July 2002

Fuel Spraying and Fireball Outside Buildings

iBMB

Ignition Experiments (BAM/PTB) and Fireball Modeling

- Ignition experiments
 - Fuel spray ignition (droplet spectra analogous to ITA-experiments)
 - ◆ Fireball characteristics
 - ◆ Amount of fuel for pool fire
- Numerical simulations
 - ◆ Model validation with experiments
 - Scaling up from small scale to real scale experiments

Summary and Conclusions

IBMB

- Goals of the activities
 - Gaining important basic data with respect to kerosene as used in Germany
 - First rough estimates of the potential consequences of kerosene fires outside and inside of buildings
- Recent status
 - Analysis of experimental data from German as well as other institutions
 - ♦ Kerosene pool fire experiments inside buildings)
- Continuation of work
 - ◆ Definition and simulation of fire scenarios
 - Identification of the significant parameters
- Expected results
 - Statements with respect to the significance of kerosene fires
 - Assumptions for further investigations